On the convergence of numerical solutions to the continuous-time constrained LQR problem

Gabriele Pannocchia¹ David Q. Mayne² James B. Rawlings³

- 1. Department of Chemical Engineering, University of Pisa, Italy (g.pannocchia@diccism.unipi.it)
- 2. Department of Electrical and Electronic Engineering, Imperial College London, UK (d.mayne@imperial.ac.uk)
- 3. Chemical and Biological Engineering, University of Wisconsin, Madison (WI), USA (rawlings@eng.wisc.edu)

21st International Symposium on Mathematical Programming Berlin (Germany), August 19 – 24, 2012

Outline

- Problem statement
 - Introduction and previously proposed method
 - Objectives
- Theoretical foundations
 - Exploiting matrix exponentiations
 - Optimality functions
- Proposed algorithm and convergence results
 - Lower bound on discretized problems
 - Conceptual algorithm
 - Implementation aspects
 - Convergence analysis
- Example results
- Conclusions and future work

Problem statement

The optimal control problem (OCP) $\mathbb{P}_T(x)$

• Solve repeatedly for different $x \in \mathbb{R}^n$

$$\min_{u(\cdot)} V_T(x, u(\cdot)) \triangleq \int_0^T \ell(x(t), u(t)) dt + V_f(x(T)) \qquad \text{s. t.}$$

$$\dot{x} = f(x, u) \triangleq Ax + Bu, \qquad x(0) = x$$

and the control constraint: $u(t) \in \mathbb{U}$

• Quadratic cost functions:
$$\ell(x, u) \triangleq \frac{1}{2}(x'Qx + u'Ru), \quad V_f(x) \triangleq \frac{1}{2}x'Px$$

$$V_f(x) \triangleq \frac{1}{2}x'Px$$

Main assumptions

• R and P symmetric positive definite (SPD), Q SPSD, and

$$\mathbb{U} \triangleq \prod_{i=1}^{m} \mathbb{U}_{i}$$
 where $\mathbb{U}_{i} \triangleq [u_{\min}^{i}, u_{\max}^{i}]$

• (A, B) stabilizable, (A, Q) detectable, T large enough that $x^0(T) \in X_f$, invariant set associated with $V_f(\cdot)$: terminal constraint $x(T) \in X_f$ is omitted

Input parameterizations and unconstrained analysis

Three possible holds in $t \in [t_j, t_{j+1}]$

- **ZOH**: $u(t) \triangleq u_j$
- **PWLH**: $u(t) \triangleq u_j + s_j(t t_j)$ or let $s_j \triangleq \frac{v_j u_j}{t_{j+1} t_j}$:

$$u(t) = u_j(1-r(t)) + v_j r(t) \quad \text{where} \quad r(t) = \frac{t-t_j}{t_{j+1}-t_j}$$

• **FFOH**: like PWLH but **continuous** at each t_j , i.e. $u_j = v_{j-1}$

Convergence of the optimal cost without control constraint

- True optimal cost is well-known: $V_T^0(x) = \frac{1}{2}x'Px$, P solution to ARE
- Optimal cost under each hold i: $V_T^i(x) = \frac{1}{2}x'\Pi_i x$, Π_i solution to a DARE
- $\Pi_i \to P$ as $\Delta \triangleq t_{j+1} t_j \to 0$ in **4th** order for **PWLH and FFOH** and 2nd order for ZOH

Previously proposed method¹

Solution of the optimal control problem

- Use N uneven intervals with a chosen hold (ZOH, PWLH or FFOH)
- Solve exactly the OCP as a QP
- Bisect all intervals, until the cost "stops" decreasing

Main features

• All QP terms are **precomputed offline** for gradually refined grids:

$$\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}' \mathbf{H} \mathbf{w} + \mathbf{w}' \mathbf{Q} x, \text{ s.t. } \mathbf{A} \mathbf{w} \le \mathbf{b}$$

• Fast online implementation

¹G. Pannocchia, J.B. Rawlings, D.Q. Mayne and W. Marquardt "On Computing Solutions to the Continuous Time Constrained Linear Quadratic Regulator", IEEE Trans. Auto. Contr., 55 (9), 2192–2198, 2010

Objectives of this work

Main goals

- Devise an adaptive grid strategy
- Prove convergence towards the optimal solution (with control constraints)
- Provide degree of suboptimality for finite iterations

Working tools

- Matrix exponentiation formulas to avoid ODE integration
- Optimality functions for discrete-time and continuous-time CLQR problems
- Functional analysis

Our focus

- The algorithm is intended as a replacement for discrete-time MPC
- We solve $\mathbb{P}_T(x)$ many times, i.e. for any given **current state** $x \in \mathbb{R}^n$ that occurs in closed-loop operation

Who needs ODE solvers anyway? ... ZOH case²

Consider a generic interval $[0, \Delta]$

• It is well-known that:

$$x(\Delta) = A_{\Delta}x(0) + B_{\Delta}u(0) \quad \text{where} \quad A_{\Delta} = e^{A\Delta}, \text{ and } B_{\Delta} = \int_0^{\Delta} e^{A\tau} B d\tau$$
$$\int_0^{\Delta} \left(x(\tau)' Q x(\tau) + u(\tau)' R u(\tau) \right) d\tau = x(0)' Q_{\Delta}x(0) + 2x(0)' M_{\Delta}u(0) + u(0)' R_{\Delta}u(0)$$

• How to compute $\int_0^\Delta e^{A\tau} B d\tau$ and $(Q_\Delta, M_\Delta, R_\Delta)$ without ODE solvers?

All at once... (faster and much more accurate)

Define *C* and its **exponential**:
$$C \triangleq \begin{bmatrix} -A' & I & 0 & 0 \\ & -A' & Q & 0 \\ & A & B \\ & & & 0 \end{bmatrix}$$
, $e^{Ct} \triangleq \begin{bmatrix} F_1(t) & G_1(t) & H_1(t) & K_1(t) \\ & F_2(t) & G_2(t) & H_2(t) \\ & F_3(t) & G_3(t) \\ & & F_4(t) \end{bmatrix}$ then:

$$e^{A\Delta} = F_3(\Delta)$$
 $B_{\Delta} = G_3(\Delta)$

$$Q_{\Delta} = F_3'(\Delta)G_2(\Delta) \quad M_{\Delta} = F_3'(\Delta)H_2(\Delta) \quad R_{\Delta} = \left[B'F_3'(\Delta)K_1(\Delta)\right] + \left[*\right]'$$

²C.F. Van Loan "Computing Integrals involving the Matrix Exponential", IEEE Trans. Auto. Contr., 23 (3), 395–404, 1978

Who needs ODE solvers anyway? ... PWLH case

Consider a generic interval $[0, \Delta]$

- Let w(0) = (u(0), v(0)). Assume PWLH: $u(t) = u_j(1 - r(t)) + v_j r(t)$ with $r(t) = \frac{t}{\Lambda}$
- Obtain without ODE solvers the discretized system and cost matrices:

$$x(\Delta) = A_{\Delta}x(0) + B_{\Delta}w(0)$$

$$\int_0^\Delta \left(x(\tau)' Q x(\tau) + u(\tau)' R u(\tau) \right) d\tau = x(0)' Q_\Delta x(0) + 2x(0)' M_\Delta w(0) + w(0)' R_\Delta w(0)$$

Define a suitably augmented system... and we're done

- Let: $A^* \triangleq \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$, $B^* \triangleq \begin{bmatrix} B & 0 \\ -\frac{I}{\Lambda} & \frac{I}{\Lambda} \end{bmatrix}$, $Q^* \triangleq \begin{bmatrix} Q & 0 \\ 0 & 0 \end{bmatrix}$.
- Define *C* and $\exp(C\Delta)$ as in **ZOH** and obtain:

$$A_{\Delta} = F_3(\Delta)_{(1:n,1:n)} \qquad B_{\Delta} = G_3(\Delta)_{(1:n,:)} \quad Q_{\Delta} = (F_3'(\Delta)G_2(\Delta))_{(1:n,1:n)}$$

$$M_{\Delta} = (F_3'(\Delta)H_2(\Delta))_{(1:n,:)} \quad R_{\Delta} = \begin{bmatrix} \frac{1}{3}R\Delta & \frac{1}{6}R\Delta \\ \frac{1}{6}R\Delta & \frac{1}{3}R\Delta \end{bmatrix} + \left[B'F_3'(\Delta)K_1(\Delta)\right] + \left[*\right]'$$

Generalities on optimality functions

Preliminaries: the space of control and state trajectories

- The control $u(\cdot)$ is assumed to lie in $\mathcal U$ defined as:
 - $\mathcal{U} \triangleq \{u : [0, T] \to \mathbb{R}^m \mid u(\cdot) \text{ measurable and } u(t) \in \mathbb{U} \text{ for all } t \in [0, T]\}$
- For any $1 \le p \le \infty$, we observe that $\mathcal{U} \subseteq L_p$, Banach space defined as:

$$L_p \triangleq \{u : [0, T] \to \mathbb{R}^m \mid u(\cdot) \text{ measurable and } \|u(\cdot)\|_p < \infty\}$$

• $u(\cdot) \in \mathcal{U}$ implies that $x(t) \triangleq \phi(t; x, u(\cdot))$ is absolutely continuous

Seeking an optimality function

- Given the initial state $x \in \mathbb{R}^n$ and a control $u(\cdot) \in \mathcal{U} \subset L_p$, we seek a **continuous**, **nonpositive** function $\theta : \mathbb{R}^n \times \mathcal{U} \to \mathbb{R}_{\leq 0}$ such that
 - ▶ $\theta(x, u(\cdot)) < 0$ if $u(\cdot)$ is **not optimal** for $\mathbb{P}_T(x)$
 - ▶ $\theta(x, u(\cdot)) = 0$ if $u(\cdot)$ is **optimal** for $\mathbb{P}_T(x)$ "optimal" rather than "locally optimal" because $\mathbb{P}_T(x)$ is **strictly convex**

An optimality function for $\mathbb{P}_T(x)$

Cost gradient w.r.t. $u(\cdot)$ and its relation to the Hamiltonian

• Given $(x, u(\cdot))$, let $x(t) = \phi(t; x, u(\cdot))$. Define $\lambda : [0, T] \to \mathbb{R}^n$, solution to the **adjoint equation**:

$$-\dot{\lambda}(t) = A'\lambda(t) + Qx(t)$$
 $\lambda(T) = Px(T)$

- Define the **Fréchet derivative** of $V_T(\cdot)$ w.r.t. $u(\cdot)$ as $g(x, u(\cdot)) = D_u V_T(x, u(\cdot))$
- For any $t \in [0, T]$, there holds: $g(x, u(\cdot)(t) = \nabla_u H(x(t), u(t), \lambda(t))$, where $H: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ is the **Hamiltonian**:

$$H(x, u, \lambda) \triangleq \ell(x, u) + \lambda'(Ax + Bu)$$

Definition

• Define (since *x* is **fixed in the algorithm execution** we omit it) $\theta: \mathcal{U} \to R_{\leq 0}$

$$\theta(u(\cdot)) \triangleq \int_0^T \langle g(x, u(\cdot))(t), u^*(t) - u(t) \rangle dt \quad \text{where}$$

$$u^*(t) \triangleq \arg\min_{v \in \mathbb{U}} \langle g(x, u(\cdot))(t), v \rangle$$

An optimality function for $\mathbb{P}_T(x)$: results and computation

Main results

- Result 1: $\theta(u(\cdot))$ is an **optimality function** for $\mathbb{P}_T(x)$
- Result 2: Since $\mathbb{P}_T(x)$ is a **convex problem**, there holds

$$V_T^0(x) \ge V_T(x, u(\cdot)) + \theta(u(\cdot))$$
 where $V_T^0(x) \triangleq \min_{u(\cdot) \in \mathcal{U}} V_T(x, u(\cdot))$

Computation (... ODE solver based)

- **Integrate** (backward) the **adjoint equation** to define $g(x, u(\cdot))(t)$
- Evaluate $u^*(t)$ and compute the integral defining $\theta(u(\cdot))$

Note: the above steps can be computed with an **ODE** (in n + 1 variables) solver call

Discretized problem and its solution

Discretization (PWLH case)

• A **discretization** γ is a sequence of J_{γ} intervals with **disjoint interiors**: $I_j \triangleq \{[t_j, t_{j+1}] \mid j \in \mathbb{I}_{0:J_{\gamma}-1}\}$ such that $[0, T] = \bigcup_{j=0}^{J_{\gamma}-1} I_j$

• $\mathscr{U}^{\gamma} \triangleq \{u(\cdot) \in \mathscr{U} \mid u(\cdot) \text{ is linear in each } I_j\}^{t_0}$

Solution to the discretized problem

 $\mathbb{P}_T^{\gamma}(x)$: $\min_{u(\cdot) \in \mathcal{U}^{\gamma}} V_T(x, u(\cdot))$ is **equivalent to**:

$$\min_{\mathbf{w}} V_T^{\gamma}(x, \mathbf{w}) \triangleq \sum_{j=0}^{J_{\gamma}-1} L_j(x_j, w_j) + V_f(x_{J_{\gamma}}) \quad \text{s.t. } x_{j+1} = A_j x_j + B_j w_j, \ w_j = (u_j, v_j) \in \mathbb{U}^2$$

where: $x_0 = x$, $\mathbf{w} \triangleq (w_0, w_1, \dots, w_{J_{\gamma}-1})$, $L_j(x, w) = \frac{1}{2}(x'Q_jx + 2x'M_jw + w'R_jw)$ and $(A_j, B_j, Q_j, M_j, R_j)$ are the **discretized matrices** for interval size Δ_j

A fast and useful (discrete-time) lower bound

Optimality function for $\mathbb{P}_T^{\gamma}(x)$

• Discrete-time adjoint system:

$$\lambda_j = A'_j \lambda_{j+1} + M'_j w_j + Q_j x_j \qquad \lambda_{J_\gamma} = P x_{J_\gamma}$$

and **Hamiltonian**: $H_j(x, w, \lambda) \triangleq L_j(x, w) + \lambda'(A_j x + B_j w)$

• Gradient of optimal cost: $g^{\gamma}(x, \mathbf{w}) \triangleq D_{\mathbf{w}} V_T^{\gamma}(x, \mathbf{w}) = \{g_0, g_1, \dots, g_{J_{\gamma}-1}\}$ where

$$g_j = \nabla_{w_j} H_j(x_j, w_j, \lambda_{j+1}) = M_j x_j + R_j w_j + B_j' \lambda_{j+1}$$

• Optimality function: $\theta^{\gamma}(u(\cdot)) = \sum_{j=0}^{J_{\gamma}-1} \theta_{j}^{\gamma}$ where $\theta_{j}^{\gamma} \triangleq \langle g_{j}, w_{j}^{*} - w_{j} \rangle$ and

$$V_T^{0,\gamma}(x) \ge V_T^{\gamma}(x, \mathbf{w}) + \theta^{\gamma}(u(\cdot))$$

Let Δ be the "smallest possible" interval size

- ullet The finest discretization γ^Δ is that in which all intervals have size equal to Δ
- $\theta^{\Delta}(u(\cdot)) \triangleq \theta^{\gamma^{\Delta}}(u(\cdot))$ is an **optimality function** for $\mathbb{P}_{T}^{\gamma}(x)$ at **finest discretization**

Overall (conceptual) algorithm

Setup

- Γ_{Δ} is the set of **all discretizations** in which each Δ_j is an **even multiple** of Δ
- $\gamma' \in \Gamma_{\Delta}$ is a **refinement** of $\gamma \in \Gamma_{\Delta}$ if γ' is derived from γ **bisecting some** intervals

Master algorithm

Data: $x \in \mathbb{R}^n$, $\Delta > 0$, $\epsilon > 0$, $\epsilon \in (0,1)$, $\gamma \in \Gamma_{\Delta}$

Step 1: Solve \mathbb{P}_T^{γ} and obtain control $u(\cdot) \in \mathcal{U}^{\gamma}$. Compute $\theta^{\Delta}(u(\cdot))$

Step 2: **Refine** γ (repeatedly) until $\theta^{\gamma}(u(\cdot)) \leq c\theta^{\Delta}(u(\cdot))$

Step 3: If $\theta^{\Delta}(u(\cdot)) < -\epsilon$, go to Step 1. Else go to Step 4

Step 4: Replace $\epsilon \leftarrow \frac{\epsilon}{2}$, $\Delta \leftarrow \frac{\Delta}{2}$. Bisect largest interval in γ and go to Step 1

Comments

- At the end of Step 1: $\theta^{\gamma}(u(\cdot)) = 0$. In Step 2 γ is refined, thus $\theta^{\gamma}(u(\cdot)) < 0$
- In Step 4, we can use $\epsilon \leftarrow c_1 \epsilon$ and $\Delta \leftarrow c_2 \Delta$ where $c_1, c_2 \in (0, 1)$

Implementation aspects

Adaptive bisection strategy

- Given γ and $u(\cdot)$, if we **bisect an interval** I_j obtaining (I_{j_1}, I_{j_2}) , the **PWLH parameters** in each subinterval are: $w_{j_1} = (u_j, \frac{u_j + v_j}{2}), \ w_{j_2} = (\frac{u_j + v_j}{2}, v_j)$
- We can easily compute $\theta_j^{\gamma} = \langle g_{j_1}, w_{j_1}^* w_{j_1} \rangle + \langle g_{j_1}, w_{j_1}^* w_{j_1} \rangle$
- If $\sum \theta_j^{\gamma} > c\theta^{\Delta}(u(\cdot))$, we **bisect all intervals** and repeat the procedure. Else, we bisect the **smallest number** of I_j such that $\theta^{\gamma}(u(\cdot)) \leq c\theta^{\Delta}(u(\cdot))$

Stopping criteria

- As written, the Master algorithm does not terminate
- Possible stopping criteria can be (for some small $\rho > 0$):
 - ► In Step 4, compute the CT optimality function $\theta(u(\cdot))$ and stop if $\theta(u(\cdot)) \ge -\rho$
 - ► After Step 1, stop if $\theta^{\Delta}(\cdot) \ge -\rho$

Offline computations (performed for different interval sizes)

All **matrices** required for $\mathbb{P}_T^{\gamma}(x)$ and $\theta^{\gamma}(u(\cdot))$ are computed and stored **offline**

Convergence analysis: preliminary definitions and results

<u>De</u>finitions

- Let $u_i(\cdot)$ be the **control function** computed at **iteration** i of the Algorithm
- Same meaning for ϵ_i , γ_i and Δ_i
- Let δ_i be the size of the largest interval at iteration i

Preliminary considerations

- The "loop" Step 1 to Step 3 is always executed a finite number of iterations
- ullet Let ${\mathscr I}$ index the subsequence of iterations in which Step 4 is executed
- Clearly: $(\epsilon_i, \Delta_i) \to 0$ as $i \xrightarrow{\mathscr{I}} \infty$. Hence, $\delta_i \to 0$ as $i \xrightarrow{\mathscr{I}} \infty$

Theorem (Continuity of the optimal solution to $\mathbb{P}_T(x)$)

 $u^0(\cdot):[0,T]\to \mathbb{U}$ is Lipschitz continuous

Convergence analysis: main results

Theorem (Convergence of the cost $V_T(\cdot)$ computed by the algorithm)

It follows that $V_T(x,u_i(\cdot)) \stackrel{\mathscr{I}}{\longrightarrow} V_T^0(\cdot)$ as $i \to \infty$

Proof ingredients

- Let $u_i^*(\cdot)$ be the **sample-hold** version (in **PWLH** sense) of $u^0(\cdot)$ according to **discretization** γ_i
- Use Lipschitz continuity of $u^0(\cdot)$ to show that $u_i^*(\cdot) \xrightarrow{\mathscr{I}} u^0(\cdot)$ as $i \to \infty$, because $\delta_i \to 0$
- Since $V_T(\cdot)$ is **continuous**, it follows that $V_T(x, u_i^*(\cdot)) \stackrel{\mathscr{I}}{\longrightarrow} V_T^0(\cdot)$ as $i \to \infty$
- Since $u_i^*(\cdot) \in \mathcal{U}^{\gamma_i}$, i.e. **feasible** for $\mathbb{P}_T^{\gamma_i}(\cdot)$, there holds

$$V_T^0(x) \leq V_T(x,u_i(\cdot)) \leq V_T(x,u_i^*(\cdot))$$

Corollary (Convergence of the control function $u_i(\cdot)$)

It follows that $u_i(\cdot) \xrightarrow{\mathscr{I}} u^0(\cdot)$ in L_p as $i \to \infty$

Illustrative example: system and algorithm parameters

System, LQ penalties and input constraints

 Stable system with one slow over-damped mode (time constant of 10) and two fast oscillating modes (time constant of 1)

$$\frac{0.02s^2 + 5.04s + 1}{0.4s^3 + 0.84s^2 + 10.08s + 1}$$

- LQ penalties: Q = I, R = 0.1
- Input constraints: $u \in \mathbb{U} = [-1, 1]$

Algorithm parameters

- Final time T = 5
- Initial discretization points $t_i \in \{0, 1, ..., 4\}$
- Initial **finest discretization** size $\Delta = 0.0625$ (80 intervals)
- Initial Step 3 tolerance $\epsilon = 0.1$
- Refinement parameter c = 0.8

Illustrative example: using the conceptual algorithm

Illustrative example: using the practical algorithm (PWLH)

Conclusions and work in progress

Concluding remarks

- Proposed/revised an algorithm for solutions to continuous-time constrained LQR problem
- Adaptive discretization and piece-wise linear input parameterization (constraint satisfaction and faster convergence)
- No need for ODE solvers in all steps (offline and online) due to clever exponentiation formulas
- Optimality functions are proposed and computed, which provide useful information for grid refinement and practical stopping conditions
- Convergence towards the optimal solution is proved

Current work

- Fast implementation (so far plain Octave was used...)
- Efficient (almost) analytical computation of CT optimality function
- Closed-loop stability and nominal robustness